Real World
WWeb Scalability

Ask Bjorn Hansen
Develooper LLC

O’REILLY

AUGUST 1-5 2005 « OREGON COMVENTIO

CONVENTION
R « PORTLAND, OREGON

Hello.

® 28 brilliant methods to make your website keep
working past $goal requests/transactions/sales
per second/hour/day

® Requiring minimal extra work! (or money)

® Applicable to most languages and platforms!
® All for the low low fee of $49.95!!
® Only available TODAY from [-800-SCALE!

® The Single Most Important Thing:

® [hink Horizontal!

® Not just many servers side by side, the system
has to be designed horizontal

® Everything in your architecture, not just the
front end web servers

® The single least important thing

® Micro optimizations and
other implementation
details

® Save money on servers
® But it doesn’t make you scale!

® And this talk is all about scaling

Benchmarking techniques

® Scalability isn't the same as processing time
® Not “how fast” but “how many”
® Force, not speed. Amps, not voltage
® Test scalability, not just performance

® Use a realistic load

® Test with "slow clients"

Vertical scaling

® “Get a bigger server”

® “Use faster CPUs”

® Can only help so much (with bad scale/$ value)

Vertical scaling

® A server twice as fast is
more than twice as
expensive

® That only allows for small
time scaling

® Even super computers are
horizontally scaled now

Typical scaling
bottlenecks

® Single machine “app server”

® Put your application horizontally
® Databases
® Session stores

® Network equipment

It’s the architecture

® Good to great ...
® |mplementation, scale a few times

® Architecture, scale dozens or hundreds of times

i v BT
® Get the big picture { W
right first, do micro
optimizations later

&
"
o

o
-
-
T
S
o
- o
=
S

= R

FREPRIPFE

Scalable
Application
Servers

Don’t paint yourself into a corner from the
start

Run Many of Them

® For your application...

® Avoid having The Server
for anything

® Everything should (be able
to) run on any number of

boxes

Stateless vs Stateful

® Don’t keep state within the application server
(or at least be Really Careful)

® Do you use PHP or mod_perl (or something
else that’s running in Apache HTTPD)?

® You get that for free! (usually)

#zzR

i

® “Shared Nothing”

Caching

How to not do all that work again and again and again...

Generate Static Pages

® Ultimate Performance: Make all pages static

® Generate them from templates nightly or when
updated

® Doesn’t work well if you have millions of pages
or page variations

® or something dynamic per user

Cache full pages

® Front end cache (mod_cache, squid,...)
® Set Expires header to control cache times

® or Rewrite rule to generate page if the cached
file doesn’t exist

e RewriteCond %{REQUEST FILENAME} !-s
RewriteCond %{REQUEST FILENAME}/index.html !-s
RewriteRule (*/.*) /dynamic_handler/$1 [PT]

® Still doesn’t work for dynamic content per user
("6 items in your cart”)

Cache full pages 2.0

Cache full output in the application
Include cookies etc etc in the “cache key”
Fine tuned application level control

The most flexible

® ‘“‘use cache when this, not when that”

Cache partial pages

® Pre-generate static page “snippets”
® Have the handler just assemble pieces ready to go
® Cache little page snippets (say the sidebar)

® Be careful, easy to spend more time managing the
cache snippets than you save!

® “Regexp” dynamic content into an otherwise cached
page

Cache data

® Cache data that’s slow to query, fetch or
calculate

® (Generate page from the cached data
® This moves load to cache servers

® (For better or worse)

.|. 1%"‘._.5- ':'.

Cache hit-ratios %

Start with things you hit all the time
Look at database logs

Don’t cache if you'll spend more energy writing
to the cache than you save

Do cache if it'll help you when that one single
page gets a million hits in a few hours

L d

Where to cache!

(a couple of not so great ideas)

® Process memory (Scache{foo})
® Not shared!
® Shared memory! Local file system!?

® Limited to one machine (likewise for a file
system cache)

® Some implementations are really fast
® MySQL query cache
® Flushed on each update

® Nice if it helps; don’t depend on it

MySQL cache

® Write into one or more cache tables
® Scaling and availability issues
® How do you load balance!?

® How do you deal with a cache box going
away!

® Partition the cache to spread the write load

® Use Spread to write to the cache and distribute
configuration

memcached

LiveJournal’s distributed caching system
(also used at slashdot, wikipedia, etc etc)

memory based

run it on boxes with free memory

no “master”

simple protocol

® perl, java, php, python, ruby, ...

Linux 2.6 (epoll) or FreeBSD (kqueue)

Database scaling

How to avoid buying that gazillion dollar Sun box

L

~$4,000,000 ~$5.000
(= 800 for $4M!)

i ’_/ {/ ’f’ ;HWWW‘“‘ L |
TR RN ITERRITREE

Lo -—_

p—

Be Simple

e Use MySQL
® |t’s fast and it’s easy to manage and tune

® FEasy to setup development environments

® PostgreSQL is fast too :-)

My

Basic Replication

® Good Great for read intensive
applications

® Write to one master

reads

® Read from many slaves

High ﬁ#ﬂéﬁ
Perforfrianice Al
MySQL

O'REILLY

Lots more details in loadbalancer \

“High Performance MySQL”

Running Oracle now!

® Replicate from Oracle to a MySQL
cluster

® Use triggers to keep track of
changed rows in Oracle

® Copy them to the MySQL master
server with a replication program

reads

|
|
|
|
webservers
writes
replication
program

writes

Oracle

writes

v

>

reads

v

loadbalancer \

Replication Scaling — Reads

® Reading scales well with replication

® Great for (mostly) read-only applications

One server Two servers

(thanks to Brad Fitzpatrick!)

capacity

capacity

Replication Scaling —Writes

(aka when replication sucks)

® Writing doesn’t scale with replication

® All servers needs to do the same writes

Partition your data

Cat cluster Dog cluster

99% read application? Skip e I —
this step...

master master

Solution to the too many
writes problem: Don’t have
all data on all servers

Use a Separate CIUSter foruserid %3==0 userid % 3 == | userid % 3 == |
different data sets

master

Split your data up in
different clusters (don’t do it like

it’s done in the illustration)

Cluster data with a master server

Flexible partitioning! global master

ask the “global” server “where is user 623’s —_—
data?”
“user 623 is at cluster 3”

Lots of queries to the global cluster — but
very simple and mostly read

Where is
user 6237?

data clusters

user 623 is
in cluster 3

webservers

select * from some_data
where user_id = 623

Preload, -dump and -process

® |et the servers do as much as possible without
touching the database directly

® Data structures in memory — ultimate cache!

® Dump smaller read-only often accessed data sets to

SQLite or BerkeleyDB and rsync to each webserver
(or use NF§, but...)

® Or a MySQL replica on each webserver
® Denormalized summary tables

® Just tell the DBA to bugger off

Asynchronous data loading

® Updating counts! Loading logs?

® Don’t talk directly to the database, send updates
through Spread (or whatever) to a daemon loading
data

® Don’t update for each request

update counts set count=count+l where id=37

® Aggregate say 1000 records or 2 minutes data and do
fewer database changes

update counts set count=count+42 where id=37

® Being disconnected from the DB will let the frontend
keep running if the DB is down!

Stored Procedures Evil

® Not horizontal

® \Work in the database server bad (unless it’s read-
only and replicated)

® Work on one of the scalable web fronts good

® Only do stored procedures if they save the
database work (network-io work > SP work)

Reconsider Persistent DB
Connections

® DB connection = thread = memory

® With lots of caching you might not need the
main database that often

® MySQL connections are fast
® (unless you use Oracle!)
® Commercial connection pooling products

® Newer glibc make MySQL use less memory

Don’t overwork the DB

® Databases don’t easily scale
® Don’t make the database do a ton of work
® Referential integrity is good

® TJons of extra procedures to validate and
process data maybe not so good

® Don’t be afraid of de-normalized data (call them

summary tables and the DBAs won’t notice)

Sessions

All the things that you shouldn’t put there ...

WARNING: Confusion lies ahead.

Session storage

® Session data should be light
® Put the user id in the session
® Not the user record
® Put the shopping cart _id in the session

® Not the contents of the cart!

The Golden Session Balance

® |f it’'s important save it structured in a
“proper’” database table

e |f it's not important save it in a cookie or
memcached or some such

Use cookies

® Make everything you want to store in the
session fit in a cookie or three

® You shouldn’t put
much in the session

anyway!

® Keep things stateless
on the server

Safe cookies

® VWorried about manipulated cookies!?

® Use checksums and timestamps to validate them
® cookie=1/value/1123157440/ABCD1234

® cookie=1l/key:value/ts:1123.../EFGH9876

® Encrypt them if you must, but you shouldn’t put
something secret in the session anyway!

Use your
resources wisely

don’t implode when things run warm

Resource management

® Balance how you use the hardware
® Use memory to save CPU or |O
® Balance your resource use (CPU vs RAM vs |O)

® Don’t swap memory to disk. Ever.

Parallelize work

® Split the work into smaller (but reasonable)
pieces and run them on different boxes

® Send the sub-requests off as soon as possible,
do something else and then retrieve the results

1111113

H E N | W
}J HEEEENR

Are the horizontal lines parallel or do they slope?

-.‘r-.J:-.tJ.J.r-

Use light processes
for light tasks

® Thin proxies servers or threads for “network buffers”

® (Goes between the user and your heavier backend
application

® httpd with mod_proxy / mod_backhand

® perlbal
— new & improved, now with vhost support!

® squid, peund, ...

Proxy illustration

peribal or mod_proxy
low memory/resource usage

Users
backends
lots of memory
db connections etc

Light processes

Save memory and database connections
This works spectacularly well. Really!

Can also serve static files

Avoid starting your main application as root Ny

Load balancing

In particular important if your
backend processes are “heavy”

Light processes

® Apache 2 makes it Really Easy

e ProxyPreserveHost On
<VirtualHost *>
ServerName combust.c?2.askask.com
ServerAlias *.cZ2.askask.com
RewriteEnglne on
RewriteRule (.*) http://localhost:8230$1 [P]
</VirtualHost>

® FEasy to have different “backend
environments’ on one |P

® Backend setup (Apache |.x)
Listen 127.0.0.1:8230
Port 80

Job queues

Processing time too long for
the user to wait!

Can only do N jobs in
parallel?

Use queues (and an external
worker process)

IFRAMEs and AJAX can make
this really spiffy

Job Queues

® Database “queue”

® Webserver submits job

® First available “worker” picks it up and
returns the result to the queue

® Webserver polls for status

e Other ways...

® gearman

workers

® Spread
® MQ / Java Messaging Service(?) / ...

semenber

THINK HORIZONTAL!

— The End —

Questions!?

Thank you!

ask@perl.org
ask@develooper.com

http://develooper.com/talks/

