
Real World
Web Scalability

Ask Bjørn Hansen
Develooper LLC

Hello.

• 28 brilliant methods to make your website keep
working past $goal requests/transactions/sales
per second/hour/day

• Requiring minimal extra work! (or money)

• Applicable to most languages and platforms!

• All for the low low fee of $49.95!!!

• Only available TODAY from 1-800-SCALE!

• The Single Most Important Thing:

• Think Horizontal!
• Not just many servers side by side, the system

has to be designed horizontal

• Everything in your architecture, not just the
front end web servers

• The single least important thing

• Micro optimizations and
other implementation
details

• Save money on servers

• But it doesn’t make you scale!

• And this talk is all about scaling

Benchmarking techniques

• Scalability isn't the same as processing time

• Not “how fast” but “how many”

• Force, not speed. Amps, not voltage

• Test scalability, not just performance

• Use a realistic load

• Test with "slow clients"

Vertical scaling
• “Get a bigger server”

• “Use faster CPUs”

• Can only help so much (with bad scale/$ value)

Vertical scaling

• A server twice as fast is
more than twice as
expensive

• That only allows for small
time scaling

• Even super computers are
horizontally scaled now

Typical scaling
bottlenecks

• Single machine “app server”

• Put your application horizontally

• Databases

• Session stores

• Network equipment

It’s the architecture

• Good to great ...

• Implementation, scale a few times

• Architecture, scale dozens or hundreds of times

• Get the big picture
right first, do micro
optimizations later

Scalable
Application

Servers
Don’t paint yourself into a corner from the

start

Run Many of Them

• For your application...

• Avoid having The Server
for anything

• Everything should (be able
to) run on any number of
boxes

Stateless vs Stateful

• Don’t keep state within the application server
(or at least be Really Careful)

• Do you use PHP or mod_perl (or something
else that’s running in Apache HTTPD)?

• You get that for free! (usually)

• “Shared Nothing”

Caching
 How to not do all that work again and again and again...

Generate Static Pages

• Ultimate Performance: Make all pages static

• Generate them from templates nightly or when
updated

• Doesn’t work well if you have millions of pages
or page variations

• or something dynamic per user

Cache full pages

• Front end cache (mod_cache, squid, ...)

• Set Expires header to control cache times

• or Rewrite rule to generate page if the cached
file doesn’t exist

• RewriteCond %{REQUEST_FILENAME} !-s
RewriteCond %{REQUEST_FILENAME}/index.html !-s
RewriteRule (^/.*) /dynamic_handler/$1 [PT]

• Still doesn’t work for dynamic content per user
(”6 items in your cart”)

Cache full pages 2.0

• Cache full output in the application

• Include cookies etc etc in the “cache key”

• Fine tuned application level control

• The most flexible

• “use cache when this, not when that”

Cache partial pages

• Pre-generate static page “snippets”

• Have the handler just assemble pieces ready to go

• Cache little page snippets (say the sidebar)

• Be careful, easy to spend more time managing the
cache snippets than you save!

• “Regexp” dynamic content into an otherwise cached
page

Cache data

• Cache data that’s slow to query, fetch or
calculate

• Generate page from the cached data

• This moves load to cache servers

• (For better or worse)

Cache hit-ratios

• Start with things you hit all the time

• Look at database logs

• Don’t cache if you’ll spend more energy writing
to the cache than you save

• Do cache if it’ll help you when that one single
page gets a million hits in a few hours

Caching Tools

Where to cache?
(a couple of not so great ideas)

• Process memory ($cache{foo})

• Not shared!

• Shared memory? Local file system?

• Limited to one machine (likewise for a file
system cache)

• Some implementations are really fast

• MySQL query cache

• Flushed on each update

• Nice if it helps; don’t depend on it

MySQL cache
• Write into one or more cache tables

• Scaling and availability issues

• How do you load balance?

• How do you deal with a cache box going
away?

• Partition the cache to spread the write load

• Use Spread to write to the cache and distribute
configuration

memcached

• LiveJournal’s distributed caching system
(also used at slashdot, wikipedia, etc etc)

• memory based

• run it on boxes with free memory

• no “master”

• simple protocol

• perl, java, php, python, ruby, ...

• Linux 2.6 (epoll) or FreeBSD (kqueue)

Database scaling
How to avoid buying that gazillion dollar Sun box

~$4,000,000 ~$5,000
(= 800 for $4M!)

Be Simple

• Use MySQL

• It’s fast and it’s easy to manage and tune

• Easy to setup development environments

• PostgreSQL is fast too :-)

Basic Replication
• Good Great for read intensive

applications

• Write to one master

• Read from many slaves

writes

master

slave slaveslave

writes

webservers

loadbalancer

reads

reads

Lots more details in
“High Performance MySQL”

Running Oracle now?

• Replicate from Oracle to a MySQL
cluster

• Use triggers to keep track of
changed rows in Oracle

• Copy them to the MySQL master
server with a replication program

writes

master

slave slaveslave

writes

webservers

loadbalancer

reads

reads

Oracle
replication
program

writes

Replication Scaling – Reads

• Reading scales well with replication

• Great for (mostly) read-only applications

reads

writes

reads

writes

Two servers

reads

writes

One server

ca
p
ac
it
y

(thanks to Brad Fitzpatrick!)

Replication Scaling – Writes
(aka when replication sucks)

• Writing doesn’t scale with replication

• All servers needs to do the same writes

ca
p
ac
it
y

reads

writes

reads

writes writes

reads

writes

reads

writes

reads

writes

reads

Partition your data

• 99% read application? Skip
this step...

• Solution to the too many
writes problem: Don’t have
all data on all servers

• Use a separate cluster for
different data sets

• Split your data up in
different clusters (don’t do it like
it’s done in the illustration)

master

slave

slave

slave

master

slave

slave

slave

Cat cluster Dog cluster

userid % 3 == 0

master

slave

slave

slave

master

slave

slave

slave

userid % 3 == 1

master

slave

slave

slave

userid % 3 == 1

Cluster data with a master server

• Flexible partitioning!

• ask the “global” server “where is user 623’s
data?”

• “user 623 is at cluster 3”

• Lots of queries to the global cluster – but
very simple and mostly read

master

slave

slave

global master

webservers

user 623 is

in cluster 3

Where is

user 623?

select * from some_data

where user_id = 623
cluster 1

cluster 2

cluster 3

data clusters

Preload, -dump and -process

• Let the servers do as much as possible without
touching the database directly

• Data structures in memory – ultimate cache!

• Dump smaller read-only often accessed data sets to
SQLite or BerkeleyDB and rsync to each webserver
(or use NFS, but...)

• Or a MySQL replica on each webserver

• Denormalized summary tables

• Just tell the DBA to bugger off

Asynchronous data loading

• Updating counts? Loading logs?

• Don’t talk directly to the database, send updates
through Spread (or whatever) to a daemon loading
data

• Don’t update for each request
update counts set count=count+1 where id=37

• Aggregate say 1000 records or 2 minutes data and do
fewer database changes
update counts set count=count+42 where id=37

• Being disconnected from the DB will let the frontend
keep running if the DB is down!

Stored Procedures Evil

• Not horizontal

• Work in the database server bad (unless it’s read-
only and replicated)

• Work on one of the scalable web fronts good

• Only do stored procedures if they save the
database work (network-io work > SP work)

Reconsider Persistent DB
Connections

• DB connection = thread = memory

• With lots of caching you might not need the
main database that often

• MySQL connections are fast

• (unless you use Oracle!)

• Commercial connection pooling products

• Newer glibc make MySQL use less memory

Don’t overwork the DB

• Databases don’t easily scale

• Don’t make the database do a ton of work

• Referential integrity is good

• Tons of extra procedures to validate and
process data maybe not so good

• Don’t be afraid of de-normalized data (call them
summary tables and the DBAs won’t notice)

Sessions
All the things that you shouldn’t put there ...

WARNING: Confusion lies ahead.

Session storage

• Session data should be light

• Put the user_id in the session

• Not the user record

• Put the shopping_cart_id in the session

• Not the contents of the cart!

The Golden Session Balance

• If it’s important save it structured in a
“proper” database table

• If it’s not important save it in a cookie or
memcached or some such

Use cookies

• Make everything you want to store in the
session fit in a cookie or three

• You shouldn’t put
much in the session
anyway!

• Keep things stateless
on the server

Safe cookies

• Worried about manipulated cookies?

• Use checksums and timestamps to validate them

• cookie=1/value/1123157440/ABCD1234

• cookie=1/key:value/ts:1123.../EFGH9876

• Encrypt them if you must, but you shouldn’t put
something secret in the session anyway!

Use your
resources wisely

don’t implode when things run warm

Resource management

• Balance how you use the hardware

• Use memory to save CPU or IO

• Balance your resource use (CPU vs RAM vs IO)

• Don’t swap memory to disk. Ever.

Parallelize work

• Split the work into smaller (but reasonable)
pieces and run them on different boxes

• Send the sub-requests off as soon as possible,
do something else and then retrieve the results

Use light processes
for light tasks

• Thin proxies servers or threads for “network buffers”

• Goes between the user and your heavier backend
application

• httpd with mod_proxy / mod_backhand

• perlbal
– new & improved, now with vhost support!

• squid, pound, ...

Proxy illustration

perlbal or mod_proxy
low memory/resource usage

Users

backends
lots of memory

db connections etc

Light processes

• Save memory and database connections

• This works spectacularly well. Really!

• Can also serve static files

• Avoid starting your main application as root

• Load balancing

• In particular important if your
backend processes are “heavy”

Light processes
• Apache 2 makes it Really Easy

• ProxyPreserveHost On
<VirtualHost *>
 ServerName combust.c2.askask.com
 ServerAlias *.c2.askask.com
 RewriteEngine on
 RewriteRule (.*) http://localhost:8230$1 [P]
</VirtualHost>

• Easy to have different “backend
environments” on one IP

• Backend setup (Apache 1.x)
Listen 127.0.0.1:8230
Port 80

Job queues

• Processing time too long for
the user to wait?

• Can only do N jobs in
parallel?

• Use queues (and an external
worker process)

• IFRAMEs and AJAX can make
this really spiffy

Job Queues
• Database “queue”

• Webserver submits job

• First available “worker” picks it up and
returns the result to the queue

• Webserver polls for status

• Other ways...

• gearman

• Spread

• MQ / Java Messaging Service(?) / ...

Queue

DB

webservers

workers
workers
workers
workers

remember
Think Horizontal!

Questions?

Thank you!

ask@perl.org
ask@develooper.com

http://develooper.com/talks/

– The End –

