
Ask Bjørn Hansen
Develooper LLC
ask@develooper.com

Real World
Web Scalability

If this text is too small to read, move closer!

r8

Slides at http://develooper.com/talks/

mailto:ask@develooper.com
mailto:ask@develooper.com
http://develooper.com/talks/
http://develooper.com/talks/

Hello.
• I’m Ask Bjørn Hansen

• Tutorial in a box 59 minutes!

• 53* brilliant° tips to make your website keep
working past X requests/transactions per T time

• Requiring minimal extra work! (or money)

• Concepts applicable to ~all languages and
platforms!

* Estimate, your mileage may vary
° Well, a lot of them are pretty good

Construction Ahead!

• Conflicting advice ahead

• Not everything here is
applicable to everything

• Ways to “think scalable” rather than end-
all-be-all solutions

Questions ...

• Did anyone see this talk at OSCON or the MySQL
UC before?

• ... are using Perl? PHP? Python? Java? Ruby?

• ... Oracle?

• The first, last and only lesson:

• Think Horizontal!
• Everything in your architecture, not just the front

end web servers

• Micro optimizations and other implementation
details –– Bzzzzt! Boring!

(blah blah blah, we’ll
get to the cool stuff

in a moment!)

Benchmarking techniques

• Scalability isn't the same as processing time

• Not “how fast” but “how many”

• Test “force”, not speed. Think amps, not voltage

• Test scalability, not just performance

• Use a realistic load

• Test with "slow clients"

Vertical scaling

• “Get a bigger server”

• “Use faster CPUs”

• Can only help so much (with
bad scale/$ value)

• A server twice as fast is more
than twice as expensive

• Super computers are
horizontally scaled!

Horizontal scaling

• “Just add another box” (or another thousand or ...)

• Good to great ...

• Implementation, scale your system a few times

• Architecture, scale dozens or hundreds of times

• Get the big picture
right first, do micro
optimizations later

Scalable
Application

Servers
Don’t paint yourself into a corner from the

start

Run Many of Them

• For your application...

• Avoid having The Server for
anything

• Everything should (be able
to) run on any number of
boxes

Stateless vs Stateful

• “Shared Nothing”

• Don’t keep state within the application server (or
at least be Really Careful)

• Do you use PHP or mod_perl (or something else
that’s running in Apache HTTPD)?

• You get that for free! (usually)

Caching
 How to not do all that work again and again and again...

Generate Static Pages

• Ultimate Performance: Make all pages static

• Generate them from templates nightly or when
updated

• Doesn’t work well if you have millions of pages or
page variations

Cache full pages
(or responses if it’s an API)

• Cache full output in the application

• Include cookies etc. in the “cache key”

• Fine tuned application level control

• The most flexible

• “use cache when this, not when that”

• Use regular expressions to insert customized
content into the cached page

Cache full pages 2
• Front end cache (mod_cache, squid, Varnish*...)

stores generated content

• Set Expires header to control cache times

• or Rewrite rule to generate page if the cached file
doesn’t exist (this is what Rails does) – only scales to one
server

• RewriteCond %{REQUEST_FILENAME} !-s
RewriteCond %{REQUEST_FILENAME}/index.html !-s
RewriteRule (^/.*) /dynamic_handler/$1 [PT]

• Still doesn’t work for dynamic content per user (”6
items in your cart”)

• Great for caching “dynamic” images!

* This will be one of the cool tools in this field very soon

Cache partial pages

• Pre-generate static page “snippets”
(this is what my.yahoo.com does or used to do...)

• Have the handler just assemble pieces ready to go

• Cache little page snippets (say the sidebar)

• Be careful, easy to spend more time managing the cache
snippets than you save!

• “Regexp” dynamic content into an otherwise cached
page

Cache data

• Cache data that’s slow to query, fetch or calculate

• Generate page from the cached data

• Use the same data to generate API responses!

• Moves load to cache servers

• (For better or worse)

• Good for slow data used across many pages
(”todays bestsellers in $category”)

Cache hit-ratios

• Start with things you hit all the time

• Look at database logs

• Don’t cache if you’ll need more effort writing to
the cache than you save

• Do cache if it’ll help you when that one single page
gets a million hits in a few hours (one out of two hundred
thousand pages on the digg frontpage)

Caching Tools
Where to put the cache data ...

A couple of bad ideas
Don’t do this!

• Process memory ($cache{foo})

• Not shared!

• Shared memory? Local file system?

• Limited to one machine (likewise for a file
system cache)

• Some implementations are really fast

• MySQL query cache

• Flushed on each update

• Nice if it helps; don’t depend on it

MySQL cache table
• Write into one or more cache tables

• id is the “cache key”

• type is the “namespace”

• metadata for things like headers for cached http responses

• purge_key to make it easier to delete data from the cache

CREATE TABLE `cache` (
 `id` varchar(128) NOT NULL,
 `type` varchar(128) NOT NULL default '',
 `created` timestamp NOT NULL,
 `purge_key` varchar(64) default NULL,
 `data` mediumblob NOT NULL,
 `metadata` mediumblob,
 `serialized` tinyint(1) NOT NULL default '0',
 `expires` datetime NOT NULL,
 PRIMARY KEY (`id`,`type`),
 KEY `expire_idx` (`expire`),
 KEY `purge_idx` (`purge_key`)
) ENGINE=InnoDB

MySQL Cache Fails

• Scaling and availability issues

• How do you load balance?

• How do you deal with a cache box going away?

• Partition the cache to spread the write load

• Use Spread to write to the cache and distribute
configuration

MySQL Cache Scales

• Persistence

• Most of the usual “scale the database” tricks apply

• Partitioning

• Master-Master replication for availability

• more on those things in a moment

• memcached scheme for partitioning and fail-over

memcached
• LiveJournal’s distributed caching system

(also used at slashdot, wikipedia, etc etc)

• memory based

• Linux 2.6 (epoll) or FreeBSD (kqueue)

• Low overhead for many many connections

• Run it on boxes with free memory

• No “master”

• Simple lightweight protocol

• perl, java, php, python, ruby, ...

• Performance (roughly) similar to a MySQL cache

• Scaling and high-availability is “built-in”

Database scaling
How to avoid buying that gazillion dollar Sun box

~$3,500,000
~$2,000

(= 1750 for $3.5M!) ~$3,500,000
Vertical

~$2,000
(= 1750 for $3.5M!)

Horizontal

Be Simple

• Use MySQL

• It’s fast and it’s easy to manage and tune

• Easy to setup development environments

• Avoid making your schema too complicated

• PostgreSQL is fast too :-)

Replication
More data more places!

Share the love load

Basic Replication
• Good Great for read intensive

applications

• Write to one master

• Read from many slaves

writes

master

slave slaveslave

writes

webservers

loadbalancer

reads

reads

Lots more details in
“High Performance MySQL”

Relay slave
replication

• Running out of bandwidth on the master?

• Replicating to multiple data centers?

• A “replication slave” can be master to
other slaves

• Almost any possible replication scenario
can be setup (circular, star replication, ...)

writes

master

relay
slave A

relay
slave B

writes

webservers

loadbalancer

reads

slave slaveslave

slave slaveslave

data loading
script

writes

reads

Replication Scaling – Reads

• Reading scales well with replication

• Great for (mostly) read-only applications

reads

writes

reads

writes

Two servers

reads

writes

One server

ca
p
ac
it
y

(thanks to Brad Fitzpatrick!)

Replication Scaling – Writes
(aka when replication sucks)

• Writing doesn’t scale with replication

• All servers needs to do the same writes

ca
p
ac
it
y

reads

writes

reads

writes writes

reads

writes

reads

writes

reads

writes

reads

Partition the data
Divide and Conquer!

or
Web 2.0 Buzzword Compliant!

Now free with purchase of milk!!

Partition your data

• 99% read application? Skip
this step...

• Solution to the too many
writes problem: Don’t have
all data on all servers

• Use a separate cluster for
different data sets

• Split your data up in different
clusters (don’t do it like it’s done in the
illustration)

master

slave

slave

slave

master

slave

slave

slave

Cat cluster Dog cluster

userid % 3 == 0

master

slave

slave

slave

master

slave

slave

slave

userid % 3 == 1

master

slave

slave

slave

userid % 3 == 1

Cluster data with a master server
• Can’t divide data up in “dogs” and “cats”?

• Flexible partitioning!

• The “global” server keeps track of which cluster
has the data for user “623”

• Only auto_increment columns in the “global
master”

• Aggressively cache the “global master” data

master

slave

slave

global master

webservers

user 623 is

in cluster 3

Where is

user 623?

select * from some_data

where user_id = 623
cluster 1

cluster 2

cluster 3

data clusters

How this helps “Web 2.0”
• Don’t have replication slaves!

• Use a master-master setup in each “cluster”

• master-master for redundancy

• No latency from commit to data being available

• Get IDs from the global master

• If you are careful you can write to both!

• Make each user always use the same master (as
long as it’s running)

Hacks!
Don’t be afraid of the data-duplication monster

Summary tables!
• Find queries that do things with COUNT(*) and

GROUP BY and create tables with the results!

• Data loading process updates both tables

• or hourly/daily/... updates

• Variation: Duplicate data in a different “partition”

• Data affecting both a “user” and a “group” goes
in both the “user” and the “group” partition (Flickr
does this)

Summary databases!
• Don’t just create summary tables

• Use summary databases!

• Copy the data into special databases optimized for
special queries

• full text searches

• index with both cats and dogs

• anything spanning all clusters

• Different databases for different latency
requirements (RSS feeds from replicated slave DB)

“Manual” replication
• Save data to multiple “partitions”

• Application writes two places or

• last_updated/modified_on and deleted columns or

• Use triggers to add to “replication_queue” table

• Background program to copy data based on the
queue table or the last_updated column

• Build summery tables or databases in this process

• Build star/spoke replication system

a brief diversion ...

Running Oracle now?

• Move read operations to MySQL!

• Replicate from Oracle to a MySQL
cluster with “manual replication”

• Use triggers to keep track of changed
rows in Oracle

• Copy them to the MySQL master server
with a replication program

• Good way to “sneak” MySQL in ...

writes

master

slave slaveslave

writes

webservers

loadbalancer

reads

reads

Oracle
replication
program

writes

Make everything repeatable

• Script failed in the middle of the nightly processing job?
(they will sooner or later, no matter what)

• How do you restart it?

• Build your “summary” and “load” scripts so they always
can be run again! (and again and again)

• One “authoritative” copy of a data piece – summaries
and copies are (re)created from there

More MySQL
Faster, faster, faster

Table Choice

• Short version:
Use InnoDB, it’s harder to make them fall over

• Long version:
Use InnoDB except for

• Big read-only tables (smaller, less IO)

• High volume streaming tables (think logging)

• Locked tables / INSERT DELAYED

• Specialized engines for special needs

• More engines in the future

• For now: InnoDB

Multiple MySQL instances
• Run different MySQL instances for different workloads

• Even when they share the same server anyway!

• InnoDB vs MyISAM instance

• Moving to separate hardware easier

• Optimizing MySQL for the particular workload easier

• Simpler replication

• Very easy to setup with the instance manager or
mysqld_multi

• mysql.com init scripts supports the instance manager

Asynchronous data loading

• Updating counts? Loading logs?

• Don’t talk directly to the database, send updates through
Spread (or whatever) to a daemon loading data

• Don’t update for each request
update counts set count=count+1 where id=37

• Aggregate 1000 records or 2 minutes data and do fewer
database changes
update counts set count=count+42 where id=37

• Being disconnected from the DB will let the frontend
keep running if the DB is down!

Preload, -dump and -process

• Let the servers do as much as possible without touching
the database directly

• Data structures in memory – ultimate cache!

• Dump never changing data structures to JS files for the
client to cache

• Dump smaller read-only often accessed data sets to SQLite
or BerkeleyDB and rsync to each webserver (or use NFS,
but...)

• Or a MySQL replica on each webserver

Stored Procedures
Dangerous

• Not horizontal

• Work in the database server bad (unless it’s read-only and
replicated)

• Work on one of the scalable web fronts good

• Only do stored procedures if they save the
database work (network-io work > SP work)

Reconsider Persistent DB
Connections

• DB connection = thread = memory

• With partitioning all httpd processes talk to all DBs

• With lots of caching you might not need the main
database that often

• MySQL connections are fast

• Always use persistent connections with Oracle!

• Commercial connection pooling products

InnoDB configuration

• innodb_file_per_table
Splits your innodb data into a file per table instead of one
big annoying file

• Makes optimize table `table` clear unused space

• innodb_buffer_pool_size=($MEM*0.80)

• innodb_flush_log_at_trx_commit setting

• innodb_log_file_size

• transaction-isolation = READ-COMMITTED

Store Large Binary Objects
(aka how to store images)

• Meta-data table (name, size, ...)

• Store images either in the file system

• meta data says “server ‘123’, filename ‘abc’”

• (If you want this; use mogilefs or Amazon S3 for storage!)

• OR store images in other tables

• Split data up so each table don’t get bigger than ~4GB

• Include “last modified date” in meta data

• Include it in your URLs if possible to optimize caching (/
images/$timestamp/$id.jpg)

Random Application Notes
• Everything is Unicode, please!

• (DBD::mysql almost fixed)

• Make everything use UTC – it’ll never be easier to
change your app than now (format for local
timezone on display)

• My new favorite feature:

• Make MySQL picky about bad input!

• SET sql_mode = 'STRICT_TRANS_TABLES’

Don’t overwork the DB

• Databases don’t easily scale

• Don’t make the database do a ton of work

• Referential integrity is good

• Tons of extra procedures to validate and process
data maybe not so much

• Don’t be too afraid of de-normalized data –
sometimes it’s worth the tradeoffs (call them summary tables
and the DBAs won’t notice)

Sessions
“The key to be stateless”

or
“What goes where”

Web/application server
with local

Session store

...
12345 => {
 user =>
 { username => 'joe',
 email => 'joe@example.com',
 id => 987,
 },
 shopping_cart => { ... },
 last_viewed_items => { ... },
 background_color => 'blue',
},
12346 => { ... },
....

Cookie: session_id=12345

Evil Session

What’s wrong
with this?

Web/application server
with local

Session store

...
12345 => {
 user =>
 { username => 'joe',
 email => 'joe@example.com',
 id => 987,
 },
 shopping_cart => { ... },
 last_viewed_items => { ... },
 background_color => 'blue',
},
12346 => { ... },
....

Cookie: session_id=12345

Evil Session

Easy to guess
cookie id Saving state

on one server!
Duplicate data

from a DB table

What’s wrong
with this?

Big blob of junk!

Good Session!

Database(s)

Users
987 =>

 { username => 'joe',

 email => 'joe@example.com',

 },

...

Shopping Carts
...

Cookie: sid=seh568fzkj5k09z;

Web/application server

user=987-65abc;
bg_color=blue;

cart=...;

memcached cache

seh568fzkj5k09z =>

 { last_viewed_items => {...},

 ... other "junk" ...

 },

....

• Stateless
web server!

• Important data
in a database

• Individual
expiration on
session objects

• Small data items
in cookies

Safe cookies

• Worried about manipulated cookies?

• Use checksums and timestamps to validate them!

• cookie=1/value/1123157440/ABCD1234

• cookie=1/user::987/cart::943/ts::1123.../EFGH9876

• cookie=$cookie_format_version
 /$key::$value[/$key::$value]
 /ts::$timestamp
 /$md5

• Encrypt them if you must (rarely worth the trouble
and CPU cycles)

Use light processes
for light tasks

• Thin proxies servers or threads for “network buffers”

• Goes between the user and your heavier backend
application

• Built-in load-balancing! (for Varnish, perlbal, ...)

• httpd with mod_proxy / mod_backhand

• perlbal
– more on that in a bit

• Varnish, squid, pound, ...

!

Proxy illustration

perlbal or mod_proxy
low memory/resource usage

Users

backends
lots of memory

db connections etc

Light processes

• Save memory and database connections

• This works spectacularly well. Really!

• Can also serve static files

• Avoid starting your main application as root

• Load balancing

• In particular important if your
backend processes are “heavy”

Light processes

• Apache 2 makes it Really Easy

• ProxyPreserveHost On
<VirtualHost *>
 ServerName combust.c2.askask.com
 ServerAlias *.c2.askask.com
 RewriteEngine on
 RewriteRule (.*) http://localhost:8230$1 [P]
</VirtualHost>

• Easy to have different “backend
environments” on one IP

• Backend setup (Apache 1.x)
Listen 127.0.0.1:8230
Port 80

High Availability

and Load Balancing
and Disaster Recovery

High Availability

• Automatically handle failures! (bad disks, failing fans, “oops,
unplugged the wrong box”, ...)

• For your app servers the load balancing system
should take out “bad servers” (most do)

• perlbal or Varnish can do this for http servers

• Easy-ish for things that can just “run on lots of
boxes”

Make that service always work!
• Sometimes you need a service to always run, but

on specific IP addresses

• Load balancers (level 3 or level 7: perlbal/varnish/squid)

• Routers

• DNS servers

• NFS servers

• Anything that has failover or an alternate server
– the IP needs to move (much faster than
changing DNS)

Failover tools
• On FreeBSD and OpenBSD

• Carp (moves IPs) and pfsync (synchronizes firewall state)

• (awesome for routers and NAT boxes)

• wackamole

• Simple, just moves the IP and runs a command

• Spread toolkit for communication

• Heartbeat - http://www.linux-ha.org/

• v2 supports all sorts of groupings, larger clusters (up to
16 servers)

• Uses simple /etc/init.d type scripts for running services

• Maybe more complicated than you want your HA tools

http://www.linux-ha.org
http://www.linux-ha.org

High availability
Shared storage

• NFS servers (for diskless servers, ...)

• Failover for database servers

• Traditionally either via fiber or SCSI connected to
both servers

• Or NetApp filer boxes

• All expensive and smells like “the one big server”

Cheap high availability
storage with DRBD

• Synchronizes a block device between two servers!

• “Network RAID1”

• Typically used in Active/Primary-Standby/Secondary
setup

• If the active server goes down the secondary server will
switch to primary, run fsck, mount the device and start
the service (MySQL / NFS server / ...)

• The upcoming v0.8.0 can do writes on both servers at
once – “shared disk semantics” (you need a filesystem on top that
supports that, OCFS, GFS, ...)

Load balancing

• Key to horizontal scaling (duh)

• 1) All requests goes to the load balancer
2) Load balancer picks a “real server”

• Hardware (lots of vendors)
Coyote Point have relatively cheaper ones

• Linux Virtual Server

• Open/FreeBSD firewall rules (pf firewall pools)
(no automatic failover, have to do that on the “real servers”)

Load balancing 2

• Use a “level 3” (tcp connections only) tool to send
traffic to your proxies

• Through the proxies do “level 7” (http) load
balancing

• perlbal has some really good features for this!

perlbal
• Event based based for HTTP load balancing, web

serving, and a mix of the two (see below).

• Practical fancy features like “multiplexing” keep-alive
connections to both users and back-ends

• Everything can be configured or reconfigured on the fly

• If you configure your backends to only allow as many
connections as they can handle (you should anyway!)
perlbal with automatically balance the load “perfectly”

• Can actually give Perlbal a list of URLs to try. Perlbal will
find one that's alive. Instant failover!

• http://www.danga.com/perlbal/

http://www.danga.com/perlbal/
http://www.danga.com/perlbal/

Varnish
• Modern high performance http accelerator

• Optimized as a “reverse cache”

• Whenever you would have used squid, give this a look

• v1.0 released recently with relatively few features but a
solid framework

• Work on 2.0 will start in January

• Written by Poul-Henning Kamp, famed FreeBSD
contributor

• BSD licensed, work is being paid by a norwegian
newspaper

• http://varnish.projects.linpro.no/

http://varnish.projects.linpro.no
http://varnish.projects.linpro.no

Disaster Recovery

• Separate from “fail-over”
(no disaster if we failed-over...)

• “All the “redundant” The network
cables melted”

• “The datacenter got flooded”

• “The grumpy sysadmin sabotaged
everything before he left”

Disaster Recovery Planning

• You won’t be back up in 2 hours, but plan so you
quickly will have an idea how long it will be

• Have a status update site / weblog

• Plans for getting hardware replacements

• Plans for getting running temporarily on rented
“dedicated servers” (ev1servers, rackspace, ...)

• And

Backup your databse!

• Binary logs!

• Keep track of “changes since the last
snapshot”

• Use replication to Another Site
(doesn’t help on “for $table = @tables { truncate $table }”)

• On small databases use mysqldump
(or whatever similar tool your database comes with)

Backup Big Databases

• LVM snapshots (or ibbackup from Innobase / Oracle)

• InnoDB:
Automatic recovery! (ooh, magic)

• MyISAM:
Read Lock your database for a few seconds before
making the snapshot
(on MySQL do a “FLUSH TABLES” first (which might be slow) and then a
“FLUSH TABLES WITH READ LOCK” right after)

• Sync the LVM snapshot elsewhere (the office?)

• (And then remove it!)

• Bonus Optimization:
Run the backup from a replication slave!

Use your
resources wisely

don’t implode when things run warm

Keep a maintainable system!

• Configuration in SVN (or similar)

• Use tools to keep system configuration in sync

• Upcoming configuration management (and more)

tools!

• csync2 (librsync and sqlite based sync tool)

• puppet (central server, rule system, ruby!)

Netboot your
application servers!

• Definitely netboot the installation (you’ll never buy another
server with a tedious CD/DVD drive)

• Netboot application servers

• FreeBSD has awesome support for this

• Debian is supposed to too

• Fedora Core 7 looks like it will (RHEL5 too?)

Keep software deployments easy

• Make upgrading the software a simple process

• Script database schema changes

• Keep configuration minimal

• Servername (“www.example.com”)

• Database names (“userdb = host=db1;db=users”;...”

• If there’s a reasonable default, put the default in the code
(for example)

• “deployment_mode = devel / test / prod” lets you put
reasonable defaults in code

http://www.example.com
http://www.example.com

Easy software deployment 2
• How do you distribute your code to all the app

servers?

• Use your source code repository (Subversion etc)!
(tell your script to svn up to http://svn/branches/prod revision 123 and
restart)

• .tar.gz to be unpacked on each server

• .rpm or .deb package

• NFS mount and symlinks

• No matter what: Make your test environment use
the same mechanism as production and:
Have it scripted!

http://svn/branches/prod
http://svn/branches/prod

Resource management

• If possible, only run one service per server (makes

monitoring/managing your capacity much easier)

• Balance how you use the hardware

• Use memory to save CPU or IO

• Balance your resource use (CPU vs RAM vs IO)

• Extra memory on the app server? Run memcached!

• Don’t swap memory to disk. Ever.

Work in parallel

• Split the work into smaller (but reasonable) pieces
and run them on different boxes

• Send the sub-requests off as soon as possible, do
something else and then retrieve the results

Job queues

• Processing time too long for
the user to wait?

• Can only do N jobs in parallel?

• Use queues (and an external
worker process)

• IFRAMEs and AJAX can make
this really spiffy

Job queues 2
• Database “queue”

• Webserver submits job

• First available “worker” picks it up and
returns the result to the queue

• Webserver polls for status

• Other ways...

• gearman
http://www.danga.com/gearman/

• Spread

• MQ / Java Messaging Service(?) / ...

Queue

DB

webservers

workers
workers
workers
workers

http://www.danga.com/gearman/
http://www.danga.com/gearman/

Log http requests!
• Log slow http transactions to a database

time, response_time, uri, remote_ip, user_agent, request_args, user,
svn_branch_revision, log_reason (a “SET” column), ...

• Log 2% of all requests!

• Log all 4xx and 5xx requests

• Great for statistical analysis!

• Which requests are slower

• Is the site getting faster or slower?

• Time::HiRes in Perl, microseconds from gettimeofday
system call

Get good deals on servers

• Silicon Mechanics
http://www.siliconmechanics.com/

• Server vendor of LiveJournal and lots others

• Small, but not too small

http://www.siliconmechanics.com
http://www.siliconmechanics.com

remember
Think Horizontal!

Hiring!
• Contractors and dedicated moonlighters!

• Help me with $client_project ($$)

• Help me with $super_secret_startup (fun!)

• Perl / MySQL

• Javascript/AJAX

• ask@develooper.com
(resume in text or pdf, code samples)

mailto:ask@develooper.com
mailto:ask@develooper.com

Building Scalable Web Sites

• Our track chair, Cal Henderson,
wrote an excellent book about all
this.

• $26 on Amazon! (But it’s worth the $40 in
from your local book too)

Thanks!
• Direct and indirect help from ...

• Cal Henderson, Flickr Yahoo!

• Brad Fitzpatrick, LiveJournal SixApart

• Kevin Scaldeferri, Overture Yahoo!

• Perrin Harkins, Plus Three

• David Wheeler, Tom Metro

• Tim Bunce & Graham Barr

• Vani Raja Hansen! :-)

Questions?

Thank you!

More questions? Comments? Need consulting?
ask@perl.org

ask@develooper.com

http://develooper.com/talks/

– The End –

mailto:ask@perl.org
mailto:ask@perl.org
http://develooper.com/talks/
http://develooper.com/talks/

